## WEEKLY TEST MEDICAL PLUS -02 TEST - 08 RAJ PUR SOLUTION Date 25-08-2019

## [PHYSICS]

1. $\quad$ Acceleration of the rope $a=(F / M)$


Now, considering the motion of the part $A B$ of the rope [which has mass $\left(\frac{M}{L}\right) y$ and acceleration given by, eqn (i)] assuming that tension at $B$ is $T$.
$F-T=\left(\frac{M}{L} y\right) \times a$
or $\quad F-T=\frac{M}{L} y \times \frac{F}{M}=\frac{F y}{L}$
or $\quad T=F-F \frac{y}{L}=F\left(I-\frac{y}{L}\right)$
2. Here $\theta$ and the length $P Q$ vary with time. Let $P Q=1$ at any instant.
$P M=I \cos \theta$,
$M Q=I \sin \theta$
$\mathrm{V}=\frac{\mathrm{dl}}{\mathrm{dt}}$ (given)
As the block does not move vertically
Further, $\frac{d}{d t}(M Q)=$ required velocity

or $\frac{d}{d t}(I \sin \theta)=v($ say $)$
Solving these equations, we get;
$\mathrm{V}=\frac{\mathrm{V}}{\sin \theta}$
3. Suppose a be the downward acceleration of the 4 kg mass, therefore, 2a is the upward acceleration of the 1 kg mass. Hence, equations of motion are:
$1 \times 2 \mathrm{a}=\mathrm{T}-1 \mathrm{~g}$
$4 \mathrm{a}=4 \mathrm{~g}-2 \mathrm{~T}$
Adding after multiplying the equation (i) by 2,
$8 \mathrm{a}=2 \mathrm{~g}$ or $\mathrm{a}=\frac{2 \mathrm{~g}}{8}=\frac{\mathrm{g}}{4}$ or $2 \mathrm{a}=\frac{\mathrm{g}}{2}$


Thus, the acceleration of the mass 1 kg is $\frac{\mathrm{g}}{2}$ upwards.
Given : $m_{1}=1 \mathrm{~kg}, m_{2}=6 \mathrm{~kg}$ and $m_{3}=3 \mathrm{~kg}$
If $a$ is the acceleration of the system
$m_{1} a=T_{1}-m_{1} g$
$m_{2} a=T_{2}-T_{1}$
$m_{3} a=m_{3} g-T_{2}$
Adding, $a\left(m_{1}+m_{2}+m_{3}\right)=\left(m_{3}-m_{1}\right) g$
$\therefore \quad a=\frac{\left(m_{3}-m_{1}\right) g}{\left(m_{1}+m_{2}+m_{3}\right)}=\frac{(3-1) \times 10}{1+6+3}=2 \mathrm{~ms}^{-2}$
5. Case I: $a=\frac{\left(m_{2}-m_{1}\right)}{\left(m_{2}+m_{1}\right)} g \frac{2 m-m}{2 m+m} g=\frac{m}{3 m} g=\frac{g}{3}$

Case II: F-T=0 or $\mathrm{T}=2 \mathrm{mg}$
Also, $\mathrm{T}-\mathrm{mg}=\mathrm{ma}$ or $2 \mathrm{mg}-\mathrm{mg}=\mathrm{ma}^{\prime}$
$\therefore \quad a^{\prime}=g$, i.e., $a<a^{\prime}$
$\mathrm{Mg}-\mathrm{T}=\mathrm{Ma}$
$\therefore \quad \mathrm{T}=\mathrm{M}(\mathrm{g}-\mathrm{a})=\mathrm{Mg}\left(1-\frac{\mathrm{a}}{\mathrm{g}}\right)$
or $\frac{2}{5} M g=M g\left(1-\frac{a}{g}\right)$
or $\frac{a}{g}=1-\frac{2}{5}=\frac{3}{5}$
$\therefore \quad \mathrm{a}=0.6 \mathrm{~g}$
7. Let a be the common acceleration of the system.

$$
\begin{array}{rll} 
& \text { Here, } \mathrm{T}=\mathrm{Ma} & \text { (for the block) } \\
& \mathrm{P}-\mathrm{T}=\mathrm{ma} & \text { (for the rope) } \\
\therefore \quad & \mathrm{P}-\mathrm{Ma}=\mathrm{ma} &
\end{array}
$$

or $\quad \mathrm{p}=\mathrm{a}(\mathrm{m}+\mathrm{M})$ or $\mathrm{a}=\frac{\mathrm{P}}{(\mathrm{M}+\mathrm{m})}$
Now, $\mathrm{T}=\mathrm{Ma}=\frac{\mathrm{MP}}{(\mathrm{M}+\mathrm{m})}$
8.
9. Net force on the rod $=F_{1}-F_{2}$
$\left(\because F_{1}>F_{2}\right)$
As mass of the rod is $M$, hence acceleration of the rod is
$a=\frac{\left(F_{1}-F_{2}\right)}{M}$
If we now consider the motion of part $A B$ of the rod [whose mass is equal to $(M / L) y$ ], then
$F_{1}-T=\frac{M}{L} y \times a$
where $T$ is the tension in the rod at the point $B$.

## AVIRAL CLASSES

CREATING SCHOLARS

Now, $F_{1}-T=\frac{M}{L} y \times\left(\frac{F_{1}-F_{2}}{M}\right)$
or $\quad T=F_{1}\left(1-\frac{y}{L}\right)+F_{2}\left(\frac{y}{L}\right)$
Alternative Method : Considering motion of the other part BC of the rod also, we can calculate tension at the point $B$. In this case,
$T-F_{2}=\frac{M}{L}(L-y) \times a$
or $\quad T=F_{2}+\frac{M}{L}(L-y) \times \frac{\left(F_{1}-F_{2}\right)}{M}$
$=F_{1}\left(1-\frac{y}{L}\right)+F_{2}\left(\frac{y}{L}\right)$
10. $\mathrm{m}_{2} \mathrm{~g}-\mathrm{T}=\mathrm{m}_{2} \mathrm{a}$
$\mathrm{T}-\mathrm{m}_{1} \mathrm{~g} \sin 3^{2} 0^{\circ}=\mathrm{m}_{1} \mathrm{a}$
Adding two equations,
$a=\frac{m_{2}-m_{1} \sin 30^{\circ}}{m_{1}+m_{2}} \times g=\frac{4-8 \times \frac{1}{2}}{4+8} \times g=0$
11.
12. $\mathrm{T}_{1}=(12+3) \mathrm{a}$ and $\mathrm{T}_{2}=3 \mathrm{a}$
$\therefore \quad \frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\frac{15 \mathrm{a}}{3 \mathrm{a}}=\frac{5}{1}$
13. Net pulling force $=2 g-1 g=10 N$

Mass being pulled $=2+1=3 \mathrm{~kg}$
$\therefore \quad$ Acceleration of the system is,
$a=\frac{10}{3} \mathrm{~m} / \mathrm{s}^{2}$
Velocity of both of the blocks at $t=1 \mathrm{~s}$ will be,
$\mathrm{v}_{0}=\mathrm{at}=\frac{10}{3} \times 1=\frac{10}{3} \mathrm{~m} / \mathrm{s}$
Now at this moment, velocity of 2 kg block becomes zero, while that of 1 kg block is $\frac{10}{3} \mathrm{~m} / \mathrm{s}$ upwards.
Hence, string tight again when
displacement of 1 kg block $=$ displacement of 2 kg block
or $\quad v_{0} t-\frac{1}{2} g t^{2}=\frac{1}{2} g t^{2}$
$\mathrm{t}=\frac{\mathrm{v}_{0}}{\mathrm{~g}}=\frac{(10 / 3)}{10}=\frac{1}{3} \mathrm{sec}$
14. Let T be the tension in the string C . Hence,
$\mathrm{T} \cos 45^{\circ}=\mathrm{Mg}$
T $\sin 45^{\circ}=$ tension in $B$
Hence, tension in $\mathrm{B}=\mathrm{Mg}=100 \mathrm{gN}$
15. Acceleration of the mass $m_{3}=$ common acceleration of the system $=\frac{T}{\text { total mass }}=\frac{F}{m_{1}+m_{2}+m_{3}}$
16.
17. The tension in the string between $P$ and $Q$ accelerates double the mass as compared to that between $A$ and $R$. Hence, tension between $P$ and $Q=2 \times$ tension between $Q$ and $R$.
18. From constraint relations we can see that the acceleration of block $B$ in upward direction is
$a_{B}=\left(\frac{a_{C}+a_{A}}{2}\right)$ with proper aigns
So $\quad a_{B}=\left(\frac{3-12 t}{2}\right)=1.5-6 t$
or $\frac{d v_{B}}{d t}=1.5-6 t$ or $\quad \int_{0}^{v_{B}} d v_{B}=\int_{0}^{1}(1.5-6 t) d t$
or $\quad v_{B}=1.5 t-3 t^{2}$ or $\quad v_{B}=0$ at $t=1 / 2 \mathrm{~s}$
19. Since, $h=\frac{1}{2} a t^{2}$, a should be same in both cases, because $h$ and $t$ are same in both cases as given.

In figure, $F_{1}-m g=m a \quad \Rightarrow \quad F_{1}=m g+m a$
In figure, $2 F-m g=m a \quad \Rightarrow \quad F_{2}=\frac{m g+m a}{2}$
$\therefore \quad F_{1}>F_{2}$

(a)

(b)
20. Let at any time, their velocities are $v_{1}$ and $v_{2}$, respectively. Then $v_{1}=v_{2} \cos \theta$

Differentiating : $a_{1}=a_{2} \cos \theta-v_{2} \sin \theta \frac{d \theta}{d t}$
Hence, none of them is correct.
21. Acceleration of cylinder down the plane is
$a=\left(g \sin 30^{\circ}\right)\left(\sin 30^{\circ}\right)=10\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)=2.5 \mathrm{~ms}^{-2}$
Time taken $t=\sqrt{\frac{2 \mathrm{~s}}{\mathrm{a}}}=\sqrt{\frac{2 \times 5}{2.5}}=2 \mathrm{~s}$
22. The acceleration of block-rope system is $a=\frac{F}{(M+m)}$, where $M$ is the mass of block and $m$ is the mass of rope. So the tension in the middle of the rope will be
$T=\{M+(m / 2)\} a=\frac{M+(m / 2) F}{M+m}$
Given that $m=M / 2$
$\therefore \quad T=\left[\frac{M+M / 4}{M+(M / 2)}\right] F=\frac{5 F}{6}$
23. $T=\frac{2 m M g}{m+M}=\frac{2 m g}{1+\frac{m}{M}}=2 m g$

Hence, total downward force is $2 \mathrm{~T}=4 \mathrm{mg}$


24 Steady rate means, net force $=0$

$\therefore \quad 3 \mathrm{~T}=75 \mathrm{~g}=750$
or $T=250 \mathrm{~N}$
25. Total upward force $=4\left(\frac{\mathrm{mg}}{2}\right)=2 \mathrm{mg}$


Total downward force $=(m+m) g=2 \mathrm{mg}$
$\therefore \quad$ Net force $=0$
$F=\frac{m g}{2}$
26. During motion of block, a component of its acceleration comes in the direction of $\mathrm{mg} \cos \theta$. Therefore,

$m g \cos \theta>N$
27. $\frac{\mathrm{a}}{\mathrm{g}}=\cot \theta$
$\therefore \quad a=g \cot \theta$


$$
\begin{aligned}
& a_{1}=\frac{m_{2} g}{m_{1}+m_{2}}=\frac{30}{7} \mathrm{~m} / \mathrm{s}^{2} \\
& a_{2}=\frac{\left(m_{1}-m_{2}\right) g}{m_{1}+m_{2}} \\
& =\frac{10}{7} \mathrm{~m} / \mathrm{s}^{2} \\
& a_{3}=\frac{m_{2} g-m_{1} g \sin 30^{\circ}}{m_{1}+m_{2}} \\
& =\frac{10}{7} m / s^{2} \\
\therefore \quad & a_{1}>a_{2}=a_{3}
\end{aligned}
$$

$$
\begin{aligned}
\text { 29. } & \frac{a_{1}}{a_{2}}=\sin \theta \\
\therefore \quad & a_{1}=a_{2} \sin \theta
\end{aligned}
$$


30. With respect to trolley means, assume trolley at rest and apply a pseudo force (=ma, towards left) on the bob.

$a_{\text {net }}=\frac{m g \sin \theta-m a \cos \theta}{m}$
31. $\mathrm{a}=\frac{\text { Net pulling force }}{\text { Total mass }}$
$=\frac{2 m g \sin 30^{\circ}}{2 m+m}=\frac{g}{3}$


FBD of $m$
$\mathrm{T}=\mathrm{ma}=\mathrm{mg} / 3$
Resultant of tensions

$R=-\left(T \cos 30^{\circ}\right) \hat{i}-\left(T \sin 30^{\circ}+T\right) \hat{J}$
Putting $\mathrm{T}=\mathrm{mg} / 3$
$R=-\frac{\sqrt{3}}{6} m g \hat{i}-\frac{m g}{2} \hat{j}$
Since pulley $P$ is in equilibriu. Therefore,
$F+R=0$
where, $F=$ force applied by clamp on pulley
$\therefore \quad F=-R \frac{m g}{6}(\sqrt{3} \hat{i}+3 \hat{j})$
32. Acceleration, $a=\frac{2 F-F}{m+m}=\frac{F}{2 m}$ (towards left)

Horizontal forces on $B$ gives the equation,
$2 \mathrm{~F}-\mathrm{N} \sin 30^{\circ}=\mathrm{m} . \mathrm{a}$
or $\quad 2 F-\frac{N}{2}=m\left(\frac{F}{2 m}\right)$
$\therefore \quad N=3 F$
33. $\mathrm{a}=\frac{\text { Net pulling force }}{\text { Total mass }}$
$=\frac{(2+2-2) g}{2+2+2}=\frac{g}{3}$
FBD of $C$
$\mathrm{mg}-\mathrm{T}=\mathrm{ma}=\frac{\mathrm{mg}}{3}$
$\therefore \quad \mathrm{T}=\frac{2}{3} \mathrm{mg}$
$=\frac{2}{3}(20)=13.3 \mathrm{~N}$
34. $T_{A}=10 \mathrm{~g}=100 \mathrm{~N}$
$\mathrm{T}_{\mathrm{B}} \cos 30^{\circ}=\mathrm{T}_{\mathrm{A}}$
$\therefore \quad \mathrm{T}_{\mathrm{B}}=\frac{200}{\sqrt{3}} \mathrm{~N}$
$\mathrm{T}_{\mathrm{B}} \sin 30^{\circ}=\mathrm{T}_{\mathrm{C}}$
$\therefore \quad \mathrm{T}_{\mathrm{C}}=\frac{100}{\sqrt{3}} \mathrm{~N}$
35. $\quad \mathrm{a}=\frac{\mathrm{mg}-\mathrm{T}}{\mathrm{m}}=\mathrm{g}-\frac{\mathrm{T}}{\mathrm{m}}$
$\mathrm{a}_{\text {min }}=\mathrm{g}-\frac{\mathrm{T}_{\text {max }}}{\mathrm{n}_{\mathrm{t}}}$
$=g-\frac{\frac{2}{3} m g}{m}=\frac{g}{3}$
36.


$$
N^{\prime}=100 \cos 30^{\circ}=100 \cdot \frac{\sqrt{3}}{2}=50 \sqrt{3} N
$$

Net driving force $=\left(100 \times \frac{1}{2}-30\right)$

$$
=20 \mathrm{~N}(\text { upward })
$$

$f_{\text {liniting }} \frac{1}{\sqrt{3}}(50 \sqrt{3})=50 \mathrm{~N}$
$\therefore \quad$ Friction $=20 \mathrm{~N}$ (downward)

$$
P=\mathrm{f}_{\mathrm{ms}}=\mu_{\mathrm{s}} \mathrm{mg}
$$

When the body starts moving with acceleration $a$, then $P-\mathrm{f}_{\mathrm{ms}}=$ ma

$$
\mu_{s} m g-\mu_{k} m g=m a
$$

or $\quad a=\left(\mu_{s}-\mu_{k}\right) g$ or $a=(0.5-0.4) 10$

$$
=0.1 \times 10 \mathrm{~ms}^{-2}=1 \mathrm{~ms}^{-2}
$$

Forces acting on block in $y$ direction are

$$
\begin{aligned}
& 30 N \downarrow, N \uparrow, \frac{3 F}{5} \uparrow \Rightarrow N=30-\frac{3 F}{5} \\
\Rightarrow & f=\mu N=\frac{1}{3}\left(30-\frac{3 F}{5}\right)=10-\frac{F}{5}
\end{aligned}
$$

Forces acting on block in $x$ direction are

$$
f \leftarrow, \frac{4 F}{5} \rightarrow \operatorname{Now} \frac{4 F}{5} \geq f \Rightarrow F \geq 10
$$

39. 

Driving force w.r.t. platform $=m a$

$$
=2 \times 4=8 \mathrm{~N}
$$

and resisting force $=f_{\text {lin }}=\mu \mathrm{N}$

$$
=0.2 \times 2 \times 10=4 \mathrm{~N}
$$

Here resisting force is sufficient to keep the block at rest w.r.t. plank hence, the block will slide on plank and friction force will be 4 N .
40.

If $\alpha$ represents angle of repose, then, $\tan \alpha=0.8$

$$
\alpha=\tan ^{-1}(0.8)=39^{\circ}
$$

The given angle of inclination is less is less than the angle of repose. So, the 1 kg block has no tendency to move. [Note that $m g \sin \theta$ is exactly balanced by the force of friction. So, $T=0$.]
41. As object just being to slide

$$
\begin{equation*}
f=m g \sin \theta \tag{i}
\end{equation*}
$$

If we start sliding the block up, the friction force will be downward direction, hence minimum force applied in upward direction.


Component of weight along inclined plane + force of friction

$$
=2 m g \sin \theta
$$



$$
f_{\mathrm{lm}}=\mu N=0.7 \times 80=56 \mathrm{~N}
$$

Net driving force $=60-40=20 \mathrm{~N} \quad$ (down the plane)
As resisting force is greater than net driving force, the friction will be static of nature and friction force is 20 N (up the plane).
43.


For the limiting condition upward friction force between board and block will balance the weight of the block.
i.e. $\quad F>m g$
$\Rightarrow \quad \mu(\mathrm{R})>m g$
$\Rightarrow \quad \mu(m a)>m g$
$\Rightarrow \quad \mu>\frac{g}{a}$
44.


Case I


Case II

Case I: When block is about to slide down
$1+m g \sin \theta=\mu m g \cos \theta$
Case II: When block is about to slide up $m g \sin \theta+\mu m g \cos \theta=7$
45.

$$
\begin{aligned}
& f_{k}=0.4 \times 2 \times 10 \mathrm{~N}=8 \mathrm{~N} \\
& \mathrm{f}_{\mathrm{ms}}=0.5 \times 2 \times 10 \mathrm{~N}=10 \mathrm{~N}
\end{aligned}
$$

Since the applied force is less than force of friction, therefore the force of friction is equal to the applied force i.e. 2.5 N .

## [CHEMISTRY]

 $\mathrm{sp}^{2}$-hybridisation
52. $\quad \mathrm{SF}_{4}$ and $\mathrm{I}_{3}^{-}$and $\mathrm{PCl}_{5}$ are $\mathrm{sp}^{3} \mathrm{~d}$-hybridised. In general $\mathrm{PCl}_{5}(\mathrm{~g})$ in considered sp${ }^{3} \mathrm{~d}$. In solid state, $\mathrm{PCl}_{5}$ exists as $\left(\mathrm{PCl}_{4}\right) \oplus\left(\mathrm{PCI}_{6}\right)^{\ominus}$ with $\mathrm{sp}^{3}$ and $\mathrm{sp}^{3} \mathrm{~d}^{2}$-hybridisations respectively.
$\mathrm{SbCl}_{5}^{2-}$ has $5 \sigma$ bonds and one lone pair. It is $\mathrm{sp}^{3} \mathrm{~d}^{2}$-hybridised.
53. Four atoms directly related with $\mathrm{C} \equiv \mathrm{C}$ are linearly arrnaged
54. XeF has 8 electrons in valence shell. In $\mathrm{XeF}_{2}, \mathrm{XeF}_{4}$ and $\mathrm{XeF}_{6}$, two sigma bonds, four sigma bonds and six sigma bonds are respectively formed. Hence, in $\mathrm{XeF}_{2} 3$ pairs of electrons are left, in $\mathrm{XeF}_{4} 2$ pairs of electron are left and in $\mathrm{XeF}_{6}$ only 1 pair of electron is left.
55. In $\mathrm{BH}_{3}$, B -atom forms $3 \sigma$-bonds has $\mathrm{sp}^{2}$-hybridization. In $\mathrm{B}_{2} \mathrm{H}_{6}$, each B -atom is joined with 4 H atoms and is $\mathrm{sp}^{3}$-hybridization
56.

57. Each $f C^{1}$ and $C^{2}$ are forming two sigma bonds. Hence, both are sp-hybridised.
58.
59.

60. In $\mathrm{SF}_{4}$, sulphur atom is $\mathrm{sp}^{3} \mathrm{~d}$ hybridized with two axial and two equitorial F -atoms and one lone pair on equitorial position.
The axial $S-F$ bonds are larger than equitorial $S-F$ bonds.
61. In methane C -atom is $\mathrm{sp}^{3}$-hybridized with 25 s -character. In ethene, it is $\mathrm{sp}^{2}$ with 33 s -character has to be less than 25 (actual value is 21.43)
62.
 $12 \sigma$ and $3 \pi$ bonds. Ratio $\sigma: \pi$ bonds $=4: 1$

Highest product of charges of ions.
64. Phosphorus ( $\left.1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 \mathrm{~d}\right)$ can expand electronic configuration become of availability of 3d-subshell in valence shell. Nitrogen ( $1 s^{2} 2 s^{2} 2 p^{3}$ ) has no d-subshell in valence shell for expansion of electronic configuration.
65. $\mathrm{Cu}^{2+}$ and $\mathrm{SO}_{4}{ }^{2-}$ have coulombic forces of attraction giving rise to ionic bond. Four $\mathrm{H}_{2} \mathrm{O}$ molecules form coordinate bonds with $\mathrm{Cu}^{2+}$. One $\mathrm{H}_{2} \mathrm{O}$ molecule joins two $\mathrm{H}_{2} \mathrm{O}$ related to $\mathrm{Cu}^{2+}$ and also $\mathrm{SO}_{4}{ }^{2-}$ by H -bonds. $\mathrm{H}_{2} \mathrm{O}$ itself has covalent bonds.
66.

67. $\quad \mathrm{x}$ is related to $\mathrm{sp}^{3}$-hybridized C -atom, y is related to $\mathrm{sp}^{2}$-hybridized C -atom and z is related to sp -hybridised C-atom.
68.

69.

## $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH}$ has $10 \sigma$-bonds are $3 \pi$-bonds

 34 electrons$\mathrm{BF}_{3}$ and $\mathrm{NO}_{2}^{-}$have $\mathrm{sp}^{2}$-hybridised central atom while $\mathrm{NH}_{2}^{-}$and $\mathrm{H}_{2} \mathrm{O}$ have $\mathrm{sp}^{3}$ hybridised central atom.

$\qquad$
70. A covalent bond is formed by the partial overlap of electron clouds of half filled orbitals.
71. A
72. C
73. $\quad \mathrm{O}_{2}^{-}$has one unpaired electron $\left(\pi_{2 p_{\mathrm{y}}}^{*}\right)^{1}$.
74. L.E. is directly proportional to charge and inversely proportional to size.

